List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Electron charge $e = -1.60 \times 10^{-19} \text{ C}$

Electron mass $m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Planck constant $h = 6.63 \times 10^{-34} \text{ J s}$

Speed of light in a vacuum $c = 3.00 \times 10^8 \text{ m s}^{-1}$

Unit 1

Mechanics

Power

Kinematic equations of motion $s = \frac{(u+v)t}{2}$

v = u + at

 $s = ut + \frac{1}{2}at^2$

 $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

 $g = \frac{F}{m}$

W = mg

Momentum p = mv

Moment of force moment = Fx

Work and energy $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2} m v^2$

 $\Delta E_{\rm grav} = mg\Delta h$

 $P = \frac{E}{t}$

 $P = \frac{W}{t}$

$$efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$$

Materials

Density
$$\rho = \frac{m}{V}$$

Stokes' law
$$F = 6\pi \eta rv$$

Hooke's law
$$\Delta F = k\Delta x$$

Elastic strain energy
$$\Delta E_{\rm el} = \frac{1}{2} F \Delta x$$

Young modulus
$$E = \frac{\sigma}{\varepsilon}$$
 where

Stress
$$\sigma = \frac{F}{A}$$

Strain
$$\varepsilon = \frac{\Delta x}{x}$$

Unit 2

Waves

Wave speed	$v = f\lambda$
Speed of a transverse wave on a string	$v = \sqrt{\frac{T}{\mu}}$
Intensity of radiation	$I = \frac{P}{A}$
Refractive index	$n \sin \theta - n \sin \theta$

Refractive index
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n = \frac{c}{v}$$

$$n =$$

Critical angle
$$\sin C = \frac{1}{n}$$

Diffraction grating
$$n\lambda = d\sin\theta$$

Electricity

Potential difference
$$V = \frac{W}{Q}$$

Resistance $R = \frac{V}{I}$

Electrical power, energy
$$P = VI$$

$$P = I^{2}R$$

$$P = \frac{V^{2}}{R}$$

$$W = VIt$$

Resistivity
$$R = \frac{\rho l}{A}$$

Current
$$I = \frac{\Delta Q}{\Delta t}$$

$$I = nqvA$$

Resistors in series
$$R = R_1 + R_2 + R_3$$

Resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Particle nature of light

Photon model
$$E = hf$$

Einstein's photoelectric
$$hf = \emptyset + \frac{1}{2} m v_{\text{max}}^2$$
 equation

de Broglie wavelength
$$\lambda = \frac{h}{p}$$